Todas las respuestas han de ser debidamente razonadas

Problema 4. Una empresa ha estimado que los ingresos y gastos mensuales (en euros) que genera la fabricación de x unidades de un producto vienen dados por las siguientes funciones:

Ingresos:
$$I(x) = 4 x^2 + 800 x$$
, Gastos: $G(x) = 6 x^2 + 460 x + 672$

- a) La empresa considera rentable el producto si el beneficio que obtiene con él es mayor o igual que 0. ¿Cuál es el número mínimo de unidades que debe fabricar la empresa para que el producto sea rentable? (4 puntos)
- b) ¿Cuál es el número de unidades que debe fabricar la empresa para que el beneficio sea máximo? ¿Cuál es el beneficio obtenido en este caso? (3 puntos)
- c) El próximo mes se introducirá una nueva normativa que obligará a la empresa a fabricar al menos 100 unidades de este producto. ¿Cuál es el máximo beneficio que podrá obtener la empresa tras la implantación de esta normativa? Justifica tu respuesta. (3 puntos)

Solución:

Llamando B(x) *al beneficio proporcionado por* x *unidades,*

$$B(x) = I(x) - G(x) = 4x^{2} + 800x - 6x^{2} - 460x - 672 = -2x^{2} + 340x - 672$$

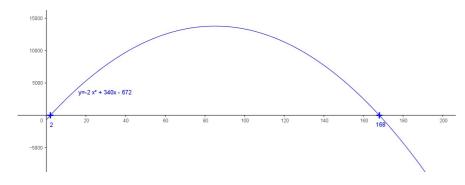
Como x es número de unidades, entonces Dom $B(x) = [0, +\infty)$

a) $\partial x / B(x) \ge 0$?

Debemos resolver la inecuación: $-2x^2 + 340x - 672 \ge 0$

$$-2x^{2} + 340x - 672 = 0 \rightarrow x = \frac{-340 \pm \sqrt{340^{2} - 4 \cdot (-2) \cdot (-672)}}{2 \cdot (-2)} = \frac{-340 \pm 332}{-4} = \begin{cases} x_{1} = \frac{-340 + 332}{-4} = 2 \\ x_{2} = \frac{-340 - 332}{-4} = 168 \end{cases}$$

B(x) es un polinomio de 2º grado con coeficiente de x^2 negativo y raíces 2 y 168, gráficamente:



Por tanto $B(x) \ge 0$ cuando $x \ge 2$.

El número mínimo de unidades que debe fabricar para que el producto sea rentable es 2 (y como máximo 168).

b) $\langle x?/B(x) \text{ sea máximo.}$

Como B(x) es un polinomio de 2º grado, que hemos representado antes, el máximo se alcanza en el vértice de la parábola,

$$x_v = \frac{-b}{2a} = \frac{-340}{2(-2)} = \frac{-340}{-4} = 85$$

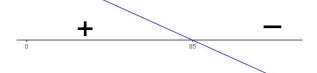
Otra forma de encontrar el máximo de B(x) es estudiar el signo de B'(x):

$$B'(x) = -4x + 340$$

$$-4x + 340 = 0;$$
 $4x = 340;$ $x = \frac{340}{4} = 85$

Hay que estudiar el signo de B'(x) en los intervalos: (0, 85) y $(85, +\infty)$

Como B'(x) es un polinomio de primer grado con coeficiente de x negativo y raíz 85,

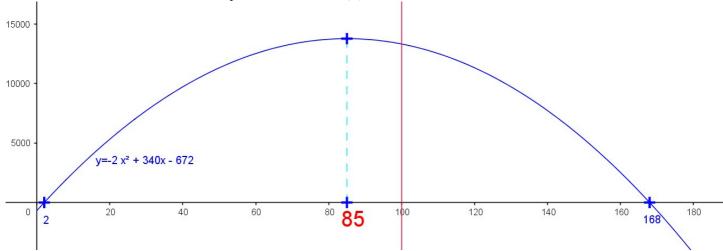


Luego, en x = 85 hay un máximo relativo que es el absoluto de B(x) ya que la función a la derecha es creciente y a la izquierda decreciente.

Para
$$x = 85$$
, $B(85) = -2$. $85^2 + 340$. $85 - 672 = 13778$.

Solución: para que el beneficio sea máximo la empresa debe fabricar 85 unidades y, en este caso, el beneficio será de 13778 €.

c) La empresa debe fabricar, al menos, 100 unidades. z ? B(x) sea máximo. Añadiendo esta restricción en la representación de B(x),



Como B(x), a partir de x = 85 es decreciente, cuando $x \ge 100$ la función alcanza su máximo en este valor x = 100.

$$B(100) = -2 \cdot 100^2 + 340 \cdot 100 - 672 = 13328.$$

Por tanto, el máximo beneficio que podrá obtener la empresa tras la implantación de la nueva normativa es de 13328 €.