3.2 Dado el plano
$$\pi$$
: $2x + y - 3 = 0$ y la recta $r:\begin{cases} x = 1 + \alpha \\ y = -1 - 2\alpha \end{cases}$, se pide: $z = 1$

- 3.2.1 (1.25 puntos) Obtener la ecuación del plano perpendicular a π y que contiene a r.
- 3.2.2 (1.25 puntos) Calcular, si existe, un plano paralelo a π y que contenga a r.

Solución:

3.2.1 Obtener la ecuación del plano, σ , perpendicular a π y que contiene a r.

Del plano σ necesitamos conocer un puno y dos vectores directores.

Como
$$r \subset \sigma \rightarrow \begin{cases} \overrightarrow{v_r} = (1, -2, 0) = \overrightarrow{u_\sigma} \\ P_r = (1, -1, 1) = P_\sigma \end{cases}$$

Como
$$\sigma \perp \pi \rightarrow \vec{n_{\pi}} = (2,1,0) = \vec{w_{\sigma}}$$

Los vectores $\overset{\rightarrow}{u_{\sigma}}$ y $\overset{\rightarrow}{w_{\sigma}}$ no son paralelos ya que sus coordenadas no son proporcionales $\left(\frac{1}{2} \neq \frac{-2}{l}\right)$, por lo que sirven como vectores directores del plano σ .

La ecuación de
$$\sigma$$
 será: $\begin{vmatrix} x-1 & y+1 & z-1 \\ 1 & -2 & 0 \\ 2 & 1 & 0 \end{vmatrix} = 0; \quad (z-1) \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 0; \quad (z-1) 5 = 0; \quad z-1 = 0$

Solución: la ecuación del plano pedido es z - 1 = 0.

3.2.2 Calcular, si existe, un plano paralelo a π y que contenga a r.

¿Existe plano
$$\psi$$
? / ψ // π y $r \subset \psi$.

Como
$$\psi // \pi \rightarrow \psi$$
: $2x + y + D = 0$.

Como $r \subset \psi \to los$ puntos de la recta r verifican la ecuación del plano ψ :

$$2(1 + \alpha) + (-1 - 2\alpha) + D = 0; 2 + 2\alpha - 1 - 2\alpha + D = 0; 1 + D = 0; D = -1$$

Solución: la ecuación del plano pedido es 2x + y - 1 = 0.